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Word Embeddings in Natural Language Processing Data Selection

Distributional Semantics and Vector Models: = Language: English

= Word and text meaning encoded in dense vectors: = No function words
= fastText (Bojanovvski et al., 2017: Joulin et al., 2018) = Only nouns filtered by NLP pre-processing
= GloVe (Pennington et al., 2014) . .
« Numberbatch (Speer et al.. 2017) = Random selection of 100 words in the vector models
= BERT (Devlin et al., 2019) = Manual selection of 100 words covering 20 different topics or
= Large Language Models and Generative Al (byte-pair encoding) semantic fields:
= Generating word embeddings and language models: = teacher professor student school university college
» Costly and time-consuming computation = game sport ball team player
= Large training and evaluation data sets = computer laptop tqblet phpne .
= Many pre-computed models freely available = Mmusic song band singer guitar piano
- Use-cases, for example: = movie actor actress director producer
= Generic neural or probabilistic NLP methods for text classification, machine = Generation of all possible word pairs for each of the two sets
translation, ... = Computation of Cosine Similarity for each word pair

= | exical- or text-similarity computation in semantic search .
* Environment: qiskit and qasm_simulator

Quantum NLP Questions:

= Can classical embeddings and language models be used in QC for Issues

Q-NLP/AI/ML?

= How reliable are encoding approaches for mapping classical to
quantum embeddings?

= Computational complexity of conversion classical to quantum
embeddings.

= |s there information loss or deterioration of quality in different mapping * Costly computation of similarity scores.

approaches? = WWord embedding models are not cleaned, contain ambiguities, and
contain non-lexical data.

Our Goals _
Conclusion

= |dentify reliable mapping approaches from classical to quantum , L , , L
= Result: classical vector similarity using Cosine Similarity and quantum

embeddings. ; 9 VS . , =2
o o . . o embedding similarity using Quantum similarities
= Compare the similarity metric in classical with quantum similarity = Correlation Coefficient for 4400-word pairs approx. 0.90 on
scores. average for the pre-computed vector models using the
gasm_simulator
» Mapping Algorithms: Amplitude Encoding, Basis Encoding, Angle = There is minimal information loss in the encoding process.
Encoding... = Classical word embedding models can be used in Q-NLP/ML/AI tasks.

= Similarity Measures: SWAP test, Matrix Distances for Quantum
Circuits (Frobenius Norm Distance, Symmetrized Frobenius Norm Avai 1
. N o . . . vailabilit
Distance, Minimalized Frobenius Norm Distance, Eigenvalue Distance, y
Symmetrized Eigenvalue Distance)

= Data and Code available: GitHub repo, URI TBA in final poster version

Quantum Word Similarities
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Figure 1. Quantum circuit for the SWAP test between two circuits S and T
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