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Word Embeddings in Natural Language Processing

Distributional Semantics and Vector Models:

Word and text meaning encoded in dense vectors:
fastText (Bojanowski et al., 2017; Joulin et al., 2018)
GloVe (Pennington et al., 2014)
Numberbatch (Speer et al., 2017)
BERT (Devlin et al., 2019)
Large Language Models and Generative AI (byte-pair encoding)

Generating word embeddings and language models:
Costly and time-consuming computation
Large training and evaluation data sets
Many pre-computed models freely available

Use-cases, for example:
Generic neural or probabilistic NLP methods for text classification, machine
translation, ...
Lexical- or text-similarity computation in semantic search

Quantum NLP Questions:

Can classical embeddings and language models be used in QC for
Q-NLP/AI/ML?
How reliable are encoding approaches for mapping classical to
quantum embeddings?
Is there information loss or deterioration of quality in different mapping
approaches?

Our Goals

Identify reliable mapping approaches from classical to quantum
embeddings.
Compare the similarity metric in classical with quantum similarity
scores.

Mapping Algorithms: Amplitude Encoding, Basis Encoding, Angle
Encoding...
Similarity Measures: SWAP test, Matrix Distances for Quantum
Circuits (Frobenius Norm Distance, Symmetrized Frobenius Norm
Distance, Minimalized Frobenius Norm Distance, Eigenvalue Distance,
Symmetrized Eigenvalue Distance)

QuantumWord Similarities

Classical embeddingsæ Quantum embeddings
fastText, 300-dimensional word vectors, 2.5 mil. words
GloVe, 840 billion tokens, 300-dimensional word vectors, 2.1 mil. words
Numberbatch, 300-dimensional vectors, 516,783 words
BERT, 768-dimensional word vectors
OpenAI GPT Embeddings, large 3072-dim. and short 1536-dimensional
word vectors

Amplitude Encoding
SWAP Test (Buhrman et al., 2001)
Two circuits S and T with the same number of qubits
Measures the difference between S and T

Given qubits in S as s0, s1, . . . , sn≠1 and qubits in T as t0, t1, . . . , tn≠1 and an
ancillary qubit q0:
perform first the Hadamard gate, then
the controlled SWAP gate from q0 to si and ti, i = 0, . . . , n ≠ 1 and
again the Hadamard gate

Measures the value of q0
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Figure 1. Quantum circuit for the SWAP test between two circuits S and T

Data Selection

Language: English
No function words
Only nouns filtered by NLP pre-processing
Random selection of 100 words in the vector models
Manual selection of 100 words covering 20 different topics or
semantic fields:
teacher professor student school university college
game sport ball team player
computer laptop tablet phone
music song band singer guitar piano
movie actor actress director producer

Generation of all possible word pairs for each of the two sets
Computation of Cosine Similarity for each word pair
Environment: qiskit and qasm_simulator

Issues

Computational complexity of conversion classical to quantum
embeddings.
Costly computation of similarity scores.
Word embedding models are not cleaned, contain ambiguities, and
contain non-lexical data.

Conclusion

Result: classical vector similarity using Cosine Similarity and quantum
embedding similarity using Quantum similarities
Correlation Coefficient for 4400-word pairs approx. 0.90 on
average for the pre-computed vector models using the
qasm_simulator

There is minimal information loss in the encoding process.
Classical word embedding models can be used in Q-NLP/ML/AI tasks.

Availability

Data and Code available: GitHub repo, URI TBA in final poster version

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017. ISSN 2307-
387X.

Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf. Quantum Fingerprinting. Physical Re-
viewLetters, 87(16):167902, September 2001. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.
87.167902.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Jill Burstein et al., editor, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, June 2019.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, and Edouard Grave. Loss in translation:
Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014. URL
http://www.aclweb.org/anthology/D14-1162.

Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An open multilingual graph of general
knowledge. pages 4444–4451, 2017. URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/
view/14972.

Natural Language Processing Lab

The NLP-Lab (https://nlp-lab.org/quantumnlp/):

https://nlp-lab.org/quantumnlp/ IEEE QuantumWeek 2024 dcavar@iu.edu

http://www.aclweb.org/anthology/D14-1162
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://nlp-lab.org/quantumnlp/
https://nlp-lab.org/quantumnlp/
mailto:dcavar@iu.edu

	References

